3-Phase Servo AVR (AC Voltage Stabilizer) — Parts, Tests, Repair & Maintenance
Edwin Ogie Library is a dynamic platform for education, focused on fostering mindful communication and building positive relationships by eliminating linguistic errors. Our mission is to enhance connections through thoughtful language, emotional regulation, and self-awareness, providing educational resources that inspire personal growth. We aim to promote well-being, peace, and meaningful connections, offering a space for individuals committed to refining their communication skills.
Bulk Modulus (K) measures a material’s resistance to uniform compression. It is the ratio of the change in pressure to the resulting fractional change in volume.
K = ΔP / (ΔV / V)
K = - (ΔP · V) / ΔV (sign convention: ΔV negative under compression so K > 0)
Units: Pascal (Pa) where 1 Pa = 1 N/m². Liquids tend to have large K (nearly incompressible) compared with gases.
For small linear elastic deformations the energy stored per unit volume (elastic energy density) equals half the product of stress and strain (area under stress–strain curve):
U = ½ × (stress) × (strain) = ½ × (σ) × (ε) = ½ × (F/A) × (ΔL/L)
Q: Cube: V = 1.00×10⁻³ m³. ΔP = 2.00×10⁵ Pa → ΔV = -1.00×10⁻⁶ m³. Find K.
Solution:
ΔV / V = (-1.00×10⁻⁶) / (1.00×10⁻³) = -1.00×10⁻³
K = ΔP / (ΔV / V) = 2.00×10⁵ / (−1.00×10⁻³) ⇒ magnitude = 2.00×10⁸ Pa
Q: V = 0.020 m³ decreases by 2.0×10⁻⁵ m³ under ΔP = 1.0×10⁷ Pa. Find K.
ΔV / V = 2.0×10⁻⁵ / 0.020 = 1.0×10⁻³
K = 1.0×10⁷ / 1.0×10⁻³ = 1.0×10¹⁰ Pa
Q: Wire: L = 2.00 m, A = 1.00×10⁻⁶ m², F = 5.00 N, ΔL = 2.00×10⁻³ m. Find U (J/m³).
σ = F/A = 5.00 / 1.00×10⁻⁶ = 5.00×10⁶ Pa
ε = ΔL / L = 2.00×10⁻³ / 2.00 = 1.00×10⁻³
U = ½ σ ε = 0.5 × 5.00×10⁶ × 1.00×10⁻³ = 2.50×10³ J/m³
Q: K = 2.20×10⁹ Pa, ΔP = 1.10×10⁶ Pa. Find ΔV/V.
ΔV/V = ΔP / K = 1.10×10⁶ / 2.20×10⁹ = 5.00×10⁻⁴
Q: Sphere: V = 0.500 m³ reduces by 5.00×10⁻⁵ m³. If K = 1.00×10⁹ Pa, find ΔP (magnitude).
ΔV/V = (-5.00×10⁻⁵)/0.500 = -1.00×10⁻⁴
ΔP = K (ΔV/V) ⇒ magnitude = 1.00×10⁵ Pa
Q: Steel: K = 1.60×10¹¹ Pa, ρ = 7800 kg/m³. Find speed of sound v.
v = √(K/ρ) = √(1.60×10¹¹ / 7800) ≈ 4.53×10³ m/s
Q: If U = 1000 J/m³ and σ = 2.00×10⁶ Pa, find ε.
ε = 2U / σ = 2×1000 / 2.00×10⁶ = 1.00×10⁻³
Q: Liquid: K = 2.20×10⁹ Pa, ρ = 1000 kg/m³. Compute v.
v = √(K/ρ) = √(2.20×10⁹ / 1000) ≈ 1.48×10³ m/s
Q: Block: V = 0.100 m³ → 0.0999 m³ under ΔP = 5.00×10⁶ Pa. Find K.
ΔV = -1.00×10⁻⁴ ⇒ ΔV/V = -1.00×10⁻³
K = 5.00×10⁶ / 1.00×10⁻³ = 5.00×10⁹ Pa
Q: Spring: k = 200 N/m, x = 0.10 m. Es = ½ k x² = 1 J. L = 0.50 m, A = 1.00×10⁻⁴ m². Find U.
Es = ½ k x² = 0.5 × 200 × (0.10)² = 1.00 J
V ≈ A L = 1.00×10⁻⁴ × 0.50 = 5.00×10⁻⁵ m³
U = Es / V = 1 / 5.00×10⁻⁵ = 2.00×10⁴ J/m³
Press Start Quiz. There is a 5-second countdown, then 20 minutes for 30 questions. The quiz auto-submits when time runs out. Attempts are saved to your browser.
Resources: Edwin Ogie Library — practice responsibly.
Comments
Post a Comment
We’d love to hear from you! Share your thoughts or questions below. Please keep comments positive and meaningful, Comments are welcome — we moderate for spam and civility; please be respectful.