Skip to main content

Featured post

3-Phase Servo AVR (AC Voltage Stabilizer) — Parts, Tests, Repair & Maintenance

Image
3-Phase Servo AVR (AC Voltage Stabilizer) — Troubleshooting, Repair & Maintenance By Edwin Ogie • December 18, 2025 • -- AC Voltage Stabilizer — 3-phase servo control type (example from user photo) A practical, step-by-step guide to diagnose, repair and maintain 3-phase servo Automatic Voltage Regulators (AVR) / servo voltage stabilizers. Written in simple terms for technicians and maintenance teams working with generators, UPS rooms and factories. Includes videos, spare-parts list, safety checklist, troubleshooting flow and links to internal/external resources. Contents Why this matters In environments with unstable mains (frequent sags, surges or phase imbalance) a servo AVR protects sensitive equipment by continuously adjusting an autotransformer tap via a small servo motor. A well-maintained stabilizer saves equipment, reduces downtime and prevents costly damage. ...

Mensuration E-Book & JAMB Mensuration CBT — formulas, worked examples and a responsive practice quiz for students.

Edwin Ogie Library — Mensuration E-Book & JAMB Mensuration CBT Quiz

Introduction & Key Definitions

Mensuration is the study of measuring lengths, areas, and volumes of geometric figures and solids. Below are the key definitions you need:

  • Perimeter: total distance around a plane figure.
  • Area: measure of the region enclosed by a plane figure.
  • Surface Area: sum of the areas of all faces of a solid.
  • Volume: space occupied by a solid.
  • Arc Length: portion of a circle’s circumference.
  • Chord: straight line joining two points on a circle.
  • Sector: region between two radii and the included arc.
  • Segment: region between a chord and its arc.

Plane Figures — lengths & areas

Triangle

Perimeter = a + b + c
Area = ½ × base × height

Quadrilateral

  • Rectangle: P = 2(l + b), A = l × b
  • Square: P = 4a, A = a²
  • Parallelogram: P = 2(a + b), A = base × height
  • Trapezium: P = sum of sides, A = ½ × h × (sum of parallel sides)
Example 1:

Find the area of a triangle with base 10 cm and height 6 cm.

Area = ½ × 10 × 6 = 30 cm²
Example 2:

Find the perimeter of a rectangle of length 8 cm and breadth 5 cm.

P = 2(8 + 5) = 26 cm

Arcs & Chords

Arc (deg): 2πr × (θ/360)   —   Arc (rad): r × θ

Chord = 2r × sin(θ/2)

Example 3: Arc length of radius 7 cm subtending 60°.
Arc = 2π×7×(60/360) = 7π/3 ≈ 7.33 cm

Sectors & Segments

Sector area = ½ r² θ (radians) or π r² × (θ/360). Segment area = Sector − Triangle area.

Sector diagram

Surface Areas & Volumes

Cuboid TSA = 2(lb + bh + lh)   V = l × b × h

Cylinder TSA = 2πr(r + h)   V = π r² h

Cone TSA = π r (r + l)   V = ⅓ π r² h

Sphere TSA = 4π r²   V = 4/3 π r³

Composite Figures & Earth Distances

Break complex shapes into known solids and sum/subtract volumes or areas as needed.

Great-circle distance (Haversine)

d = 2R · arcsin(√[hav(φ₂−φ₁) + cosφ₁ cosφ₂ · hav(λ₂−λ₁)]) where hav(θ)=sin²(θ/2)

Downloads

Editable and printable resources for study.

Comments

Popular Posts

FORGIVENESS THE SECRET TO A SUCCESSFUL RELATIONSHIP

Navigating Life's Complexities Through Self-Consciousness

Mastering the Art of Present Steps for Future Triumphs