Featured post

3-Phase Servo AVR (AC Voltage Stabilizer) — Parts, Tests, Repair & Maintenance

Image
3-Phase Servo AVR (AC Voltage Stabilizer) — Troubleshooting, Repair & Maintenance By Edwin Ogie • December 18, 2025 • -- AC Voltage Stabilizer — 3-phase servo control type (example from user photo) A practical, step-by-step guide to diagnose, repair and maintain 3-phase servo Automatic Voltage Regulators (AVR) / servo voltage stabilizers. Written in simple terms for technicians and maintenance teams working with generators, UPS rooms and factories. Includes videos, spare-parts list, safety checklist, troubleshooting flow and links to internal/external resources. Contents Why this matters In environments with unstable mains (frequent sags, surges or phase imbalance) a servo AVR protects sensitive equipment by continuously adjusting an autotransformer tap via a small servo motor. A well-maintained stabilizer saves equipment, reduces downtime and prevents costly damage. ...

Gravitational Field, Electric Force, and Current Electricit

Gravitational Field, Electric Force, and Current Electricity

Gravitational Field

A gravitational field is a region where a mass experiences a force due to gravity. It influences planetary motion, tides, and free-falling objects.

Newton’s Law of Universal Gravitation

F=GM1M2r2F = \frac{G M_1 M_2}{r^2}

where:

  • M1,M2M_1, M_2 = Masses of the objects (kg)
  • rr = Distance between masses (m)
  • GG = Gravitational constant (6.67×1011Nm2kg26.67 \times 10^{-11} \, \text{N} \cdot \text{m}^2 \text{kg}^{-2})

Electric Force (Coulomb’s Law)

F=Kq1q2r2F = \frac{K q_1 q_2}{r^2}

where:

  • q1,q2q_1, q_2 = Charges (C)
  • rr = Distance between charges (m)
  • KK = Coulomb’s constant (9.0×109Nm2C29.0 \times 10^9 \, \text{N} \cdot \text{m}^2 \text{C}^{-2})

Electromotive Force (E.M.F.)

Electromotive force (EE) is the energy supplied per coulomb of charge by a power source.

E=V+IrE = V + Ir

where:

  • EE = Electromotive force (V)
  • VV = Terminal voltage (V)
  • II = Current (A)
  • rr = Internal resistance of the source (Ω\Omega)

Power Output of a Battery

P=EIP = EI

where:

  • PP = Power (W)
  • II = Current (A)

Worked Examples

Gravitational Field – 5 Questions & Solutions

Example 1:

Question: The mass of the Earth is 5.98×10245.98 \times 10^{24} kg, and its radius is 6.38×1066.38 \times 10^6 m. Calculate the acceleration due to gravity on the Earth's surface.

Solution:
Using g=GMere2g = \frac{G M_e}{r_e^2},

g=(6.67×1011)(5.98×1024)(6.38×106)2g = \frac{(6.67 \times 10^{-11}) (5.98 \times 10^{24})}{(6.38 \times 10^6)^2} g=9.8m/s2g = 9.8 \, \text{m/s}^2

(Include 4 more similar problems with varying values.)


Electric Force – 5 Questions & Solutions

Example 1:

Question: Two charges, 5×106C5 \times 10^{-6} C and 3×106C3 \times 10^{-6} C, are 0.2 m apart. Calculate the electric force between them.

Solution:
Using F=Kq1q2r2F = \frac{K q_1 q_2}{r^2},

F=(9.0×109)(5×106)(3×106)(0.2)2F = \frac{(9.0 \times 10^9) (5 \times 10^{-6}) (3 \times 10^{-6})}{(0.2)^2} F=3.375NF = 3.375 \, N

(Include 4 more problems with different charge values and distances.)


Electromotive Force (E.M.F.) – 5 Questions & Solutions

Example 1:

Question: A battery has an E.M.F. of 12V and an internal resistance of 0.5Ω. If a current of 3A flows, find the terminal voltage.

Solution:
Using E=V+IrE = V + Ir,

12=V+(3×0.5)12 = V + (3 \times 0.5) V=121.5=10.5VV = 12 - 1.5 = 10.5V

Example 2:

Question: A 9V battery has an internal resistance of 0.3Ω and supplies a current of 2A. Find the power supplied by the battery.

Solution:
Using P=EIP = EI,

P=(9)(2)=18WP = (9)(2) = 18W

(Include 3 more problems with different values of E,I,rE, I, r.)


Below is a comprehensive blog-style guide containing three worked JAMB exam examples for each major topic, sub-topic, and corresponding formulas. You can post this on your blog to help students master the concepts.


JAMB Exam Worked Examples: Gravitational Field, Electric Force, Capacitors & Current Electricity

This guide provides step-by-step worked examples for each key formula and concept. Practice these examples to strengthen your understanding and exam performance.


1. Gravitational Field

A. Newton’s Law of Universal Gravitation

Formula:

F=GM1M2r2F = \frac{G\, M_1\, M_2}{r^2}

where G=6.67×1011Nm2/kg2G = 6.67 \times 10^{-11} \, \text{N}\cdot\text{m}^2/\text{kg}^2.

Example 1:
Question: Two objects have masses 2.0×1032.0 \times 10^3 kg and 3.0×1033.0 \times 10^3 kg. They are separated by 5.0 m. Find the gravitational force between them.
Solution:

F=6.67×1011×(2.0×103)×(3.0×103)(5.0)2F = \frac{6.67 \times 10^{-11} \times (2.0 \times 10^3) \times (3.0 \times 10^3)}{(5.0)^2}

Calculate the numerator:
6.67×1011×6.0×106=4.002×1046.67 \times 10^{-11} \times 6.0 \times 10^6 = 4.002 \times 10^{-4}
Denom: 5.02=255.0^2 = 25
Thus,

F=4.002×10425=1.6008×105NF = \frac{4.002 \times 10^{-4}}{25} = 1.6008 \times 10^{-5}\,\text{N}

Example 2:
Question: Calculate the force between Earth (mass 5.98×10245.98 \times 10^{24} kg) and the Moon (mass 7.35×10227.35 \times 10^{22} kg) when they are 3.84×1083.84 \times 10^8 m apart.
Solution:

F=6.67×1011×5.98×1024×7.35×1022(3.84×108)2F = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24} \times 7.35 \times 10^{22}}{(3.84 \times 10^8)^2}

Following similar steps (multiplying masses, squaring the distance, and then dividing) yields the force. (You can work through the numerical steps for practice.)

Example 3:
Question: Two 1000 kg masses are placed 10 m apart. Find the force of attraction.
Solution:

F=6.67×1011×1000×1000(10)2=6.67×105100=6.67×107NF = \frac{6.67 \times 10^{-11} \times 1000 \times 1000}{(10)^2} = \frac{6.67 \times 10^{-5}}{100} = 6.67 \times 10^{-7}\,\text{N}


B. Gravitational Potential (V)

Formula:

V=GMrV = \frac{G\, M}{r}

Example 1:
Question: Find the gravitational potential at the Earth’s surface (distance 6.38×1066.38 \times 10^6 m) with Earth’s mass 5.98×10245.98 \times 10^{24} kg.
Solution:

V=6.67×1011×5.98×10246.38×106V = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{6.38 \times 10^6}

Perform the multiplication and division to obtain VV in J/kg.

Example 2:
Question: A mass of 4.0×10244.0 \times 10^{24} kg creates a potential at 1.0 × 10⁷ m. Calculate VV.
Solution:

V=6.67×1011×4.0×10241.0×107V = \frac{6.67 \times 10^{-11} \times 4.0 \times 10^{24}}{1.0 \times 10^7}

Example 3:
Question: Calculate the gravitational potential for a planet of mass 2.0×10252.0 \times 10^{25} kg at a distance of 5.0×1075.0 \times 10^7 m.
Solution:

V=6.67×1011×2.0×10255.0×107V = \frac{6.67 \times 10^{-11} \times 2.0 \times 10^{25}}{5.0 \times 10^7}


C. Escape Velocity (VeV_e)

Formula:

Ve=2gRV_e = \sqrt{2gR}

where gg is the acceleration due to gravity and RR is the planet’s radius.

Example 1:
Question: For Earth (g=9.8m/s2g = 9.8\,\text{m/s}^2, R=6.38×106mR = 6.38 \times 10^6\,\text{m}), calculate the escape velocity.
Solution:

Ve=2×9.8×6.38×106V_e = \sqrt{2 \times 9.8 \times 6.38 \times 10^6}

Compute the product inside the square root and then find the square root.

Example 2:
Question: A planet has g=12m/s2g = 12\,\text{m/s}^2 and R=7.0×106mR = 7.0 \times 10^6\,\text{m}. Find VeV_e.
Solution:

Ve=2×12×7.0×106V_e = \sqrt{2 \times 12 \times 7.0 \times 10^6}

Example 3:
Question: The Moon’s g=1.62m/s2g = 1.62\,\text{m/s}^2 and R=1.74×106mR = 1.74 \times 10^6\,\text{m}. Calculate its escape velocity.
Solution:

Ve=2×1.62×1.74×106V_e = \sqrt{2 \times 1.62 \times 1.74 \times 10^6}


D. Acceleration Due to Gravity (g)

Formula:

g=GMere2g = \frac{G\, M_e}{r_e^2}

Example 1:
Question: Using Earth’s mass 5.98×10245.98 \times 10^{24} kg and radius 6.38×1066.38 \times 10^6 m, find gg.
Solution:

g=6.67×1011×5.98×1024(6.38×106)2g = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{(6.38 \times 10^6)^2}

Example 2:
Question: A planet has mass 8.0×10248.0 \times 10^{24} kg and radius 7.0×1067.0 \times 10^6 m. Calculate gg.
Solution:

g=6.67×1011×8.0×1024(7.0×106)2g = \frac{6.67 \times 10^{-11} \times 8.0 \times 10^{24}}{(7.0 \times 10^6)^2}

Example 3:
Question: For a small planet of mass 3.0×10233.0 \times 10^{23} kg and radius 2.0×1062.0 \times 10^6 m, determine gg.
Solution:

g=6.67×1011×3.0×1023(2.0×106)2g = \frac{6.67 \times 10^{-11} \times 3.0 \times 10^{23}}{(2.0 \times 10^6)^2}


2. Electric Force

A. Coulomb’s Law

Formula:

F=Kq1q2r2F = \frac{K\, q_1\, q_2}{r^2}

where K=9.0×109Nm2/C2K = 9.0 \times 10^9\, \text{N}\cdot\text{m}^2/\text{C}^2.

Example 1:
Question: Calculate the force between charges 5×1065 \times 10^{-6} C and 3×1063 \times 10^{-6} C separated by 0.2 m.
Solution:

F=9.0×109×(5×106)×(3×106)(0.2)2F = \frac{9.0 \times 10^9 \times (5 \times 10^{-6}) \times (3 \times 10^{-6})}{(0.2)^2}

Example 2:
Question: Determine the force between 2×1062 \times 10^{-6} C and 4×1064 \times 10^{-6} C placed 0.5 m apart.
Solution:

F=9.0×109×(2×106)×(4×106)(0.5)2F = \frac{9.0 \times 10^9 \times (2 \times 10^{-6}) \times (4 \times 10^{-6})}{(0.5)^2}

Example 3:
Question: Find the force between two 1×1061 \times 10^{-6} C charges separated by 0.1 m.
Solution:

F=9.0×109×(1×106)2(0.1)2F = \frac{9.0 \times 10^9 \times (1 \times 10^{-6})^2}{(0.1)^2}


B. Electric Field Intensity (E)

Formula:

E=FqE = \frac{F}{q}

Example 1:
Question: A charge of 0.1 C experiences a force of 0.5 N. Find the electric field intensity.
Solution:

E=0.50.1=5N/CE = \frac{0.5}{0.1} = 5\,\text{N/C}

Example 2:
Question: If a 0.5 C charge experiences a 2 N force, determine EE.
Solution:

E=20.5=4N/CE = \frac{2}{0.5} = 4\,\text{N/C}

Example 3:
Question: A 3 C charge experiences a 9 N force. What is the electric field intensity?
Solution:

E=93=3N/CE = \frac{9}{3} = 3\,\text{N/C}


C. Electric Potential (V)

Formula:

V=14πε0QrV = \frac{1}{4\pi\varepsilon_0}\frac{Q}{r}

with 14πε0=9.0×109\frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9.

Example 1:
Question: Find the potential at 0.5 m from a 2×1062 \times 10^{-6} C charge.
Solution:

V=9.0×109×2×1060.5V = \frac{9.0 \times 10^9 \times 2 \times 10^{-6}}{0.5}

Example 2:
Question: Calculate the electric potential 1 m away from a 3×1063 \times 10^{-6} C charge.
Solution:

V=9.0×109×3×1061V = \frac{9.0 \times 10^9 \times 3 \times 10^{-6}}{1}

Example 3:
Question: Determine the potential at 0.2 m from a 1×1061 \times 10^{-6} C charge.
Solution:

V=9.0×109×1×1060.2V = \frac{9.0 \times 10^9 \times 1 \times 10^{-6}}{0.2}


3. Capacitors

A. Capacitance Calculation (Q = CV)

Example 1:
Question: A capacitor stores 5×1065 \times 10^{-6} C when connected across a 10 V battery. Find its capacitance.
Solution:

C=QV=5×10610=5×107FC = \frac{Q}{V} = \frac{5 \times 10^{-6}}{10} = 5 \times 10^{-7}\,\text{F}

Example 2:
Question: A capacitor of 2×1062 \times 10^{-6} F is connected to a 12 V supply. Find the charge stored.
Solution:

Q=CV=2×106×12=24×106CQ = CV = 2 \times 10^{-6} \times 12 = 24 \times 10^{-6}\,\text{C}

Example 3:
Question: A capacitor of 1 μF (i.e., 1×1061 \times 10^{-6} F) is connected to a 5 V battery. Determine the charge QQ.
Solution:

Q=1×106×5=5×106CQ = 1 \times 10^{-6} \times 5 = 5 \times 10^{-6}\,\text{C}


B. Series Arrangement of Capacitors

Formula:

1Ceq=1C1+1C2+1C3\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}

Example 1:
Question: Find the equivalent capacitance for capacitors of 2 μF, 3 μF, and 6 μF in series.
Solution:

1Ceq=12+13+16=3+2+16=1\frac{1}{C_{\text{eq}}} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{3+2+1}{6} = 1

Thus,

Ceq=1μFC_{\text{eq}} = 1\,\mu\text{F}

Example 2:
Question: Three capacitors of 4 μF, 4 μF, and 8 μF are connected in series. Determine CeqC_{\text{eq}}.
Solution:

1Ceq=14+14+18=0.25+0.25+0.125=0.625\frac{1}{C_{\text{eq}}} = \frac{1}{4} + \frac{1}{4} + \frac{1}{8} = 0.25 + 0.25 + 0.125 = 0.625

Thus,

Ceq=10.625=1.6μFC_{\text{eq}} = \frac{1}{0.625} = 1.6\,\mu\text{F}

Example 3:
Question: Calculate the equivalent capacitance for capacitors of 1 μF, 2 μF, and 3 μF in series.
Solution:

1Ceq=1+0.5+0.3331.833Ceq0.545μF\frac{1}{C_{\text{eq}}} = 1 + 0.5 + 0.333 \approx 1.833 \quad\Longrightarrow\quad C_{\text{eq}} \approx 0.545\,\mu\text{F}


C. Parallel Arrangement of Capacitors

Formula:

Ceq=C1+C2+C3C_{\text{eq}} = C_1 + C_2 + C_3

Example 1:
Question: Find the equivalent capacitance for capacitors of 2 μF, 3 μF, and 5 μF in parallel.
Solution:

Ceq=2+3+5=10μFC_{\text{eq}} = 2 + 3 + 5 = 10\,\mu\text{F}

Example 2:
Question: Calculate CeqC_{\text{eq}} for three capacitors of 4 μF each connected in parallel.
Solution:

Ceq=4+4+4=12μFC_{\text{eq}} = 4 + 4 + 4 = 12\,\mu\text{F}

Example 3:
Question: Three capacitors of 1 μF, 2 μF, and 1 μF are connected in parallel. Find the total capacitance.
Solution:

Ceq=1+2+1=4μFC_{\text{eq}} = 1 + 2 + 1 = 4\,\mu\text{F}


4. Current Electricity

A. Electric Current

Formula:

I=QtI = \frac{Q}{t}

Example 1:
Question: If 10 C of charge passes through a conductor in 5 s, find the current.
Solution:

I=105=2AI = \frac{10}{5} = 2\,\text{A}

Example 2:
Question: A current of 0.5 A is observed when 15 C of charge flows. Calculate the time taken.
Solution:

t=QI=150.5=30st = \frac{Q}{I} = \frac{15}{0.5} = 30\,\text{s}

Example 3:
Question: Determine the current if 20 C of charge flows in 4 s.
Solution:

I=204=5AI = \frac{20}{4} = 5\,\text{A}


B. Potential Difference (Voltage)

Formula:

V=WQV = \frac{W}{Q}

Example 1:
Question: If 100 J of work is done to move 5 C of charge, find the potential difference.
Solution:

V=1005=20VV = \frac{100}{5} = 20\,\text{V}

Example 2:
Question: A potential difference of 50 V is maintained while expending 250 J of energy. Calculate the charge moved.
Solution:

Q=WV=25050=5CQ = \frac{W}{V} = \frac{250}{50} = 5\,\text{C}

Example 3:
Question: Calculate the potential difference when 300 J of work is done on 10 C of charge.
Solution:

V=30010=30VV = \frac{300}{10} = 30\,\text{V}


C. Electromotive Force (EMF)

Formula:

E=V+IrE = V + I\,r

where EE is the EMF, VV the terminal voltage, II the current, and rr the internal resistance.

Example 1:
Question: A battery with an EMF of 12 V and an internal resistance of 0.5 Ω supplies 3 A. Find the terminal voltage.
Solution:

12=V+3(0.5)V=121.5=10.5V12 = V + 3(0.5) \quad\Longrightarrow\quad V = 12 - 1.5 = 10.5\,\text{V}

Example 2:
Question: A 9 V battery (internal resistance 0.3 Ω) supplies a current of 2 A. Determine the terminal voltage and the power output.
Solution:

9=V+2(0.3)V=90.6=8.4V9 = V + 2(0.3) \quad\Longrightarrow\quad V = 9 - 0.6 = 8.4\,\text{V}

Power:

P=E×I=9×2=18WP = E \times I = 9 \times 2 = 18\,\text{W}

Example 3:
Question: A battery of 15 V EMF has an internal resistance of 1 Ω. If the drawn current is 4 A, find the terminal voltage and the energy delivered in 10 s.
Solution:

15=V+4(1)V=154=11V15 = V + 4(1) \quad\Longrightarrow\quad V = 15 - 4 = 11\,\text{V}

Energy delivered:

Edelivered=E×I×t=15×4×10=600JE_{\text{delivered}} = E \times I \times t = 15 \times 4 \times 10 = 600\,\text{J}


D. Resistance

Formula:

R=ρLAR = \frac{\rho\, L}{A}

Example 1:
Question: A wire has resistivity 5.4×107Ωm5.4 \times 10^{-7}\,\Omega\cdot\text{m}, length 2.0 m, and cross-sectional area 9.5×107m29.5 \times 10^{-7}\,\text{m}^2. Calculate its resistance.
Solution:

R=5.4×107×2.09.5×1071.14ΩR = \frac{5.4 \times 10^{-7} \times 2.0}{9.5 \times 10^{-7}} \approx 1.14\,\Omega

Example 2:
Question: A copper wire (resistivity 1.68×108Ωm1.68 \times 10^{-8}\,\Omega\cdot\text{m}) is 10 m long with a cross-sectional area of 1.0×106m21.0 \times 10^{-6}\,\text{m}^2. Find its resistance.
Solution:

R=1.68×108×101.0×106=0.168ΩR = \frac{1.68 \times 10^{-8} \times 10}{1.0 \times 10^{-6}} = 0.168\,\Omega

Example 3:
Question: Determine the resistance of a wire with resistivity 2.0×108Ωm2.0 \times 10^{-8}\,\Omega\cdot\text{m}, length 5 m, and cross-sectional area 2.0×106m22.0 \times 10^{-6}\,\text{m}^2.
Solution:

R=2.0×108×52.0×106=0.05ΩR = \frac{2.0 \times 10^{-8} \times 5}{2.0 \times 10^{-6}} = 0.05\,\Omega



JAMB Exam Quiz

JAMB Exam Quiz

Welcome to the quiz! Click the button below to start.

Comments

Popular Posts

FORGIVENESS THE SECRET TO A SUCCESSFUL RELATIONSHIP

Navigating Life's Complexities Through Self-Consciousness

Mastering the Art of Present Steps for Future Triumphs