Fraction and percentage error

Here are 10 JAMB-style multiple-choice questions on Fractions and BODMAS:

1. Evaluate:

34+5812\frac{3}{4} + \frac{5}{8} - \frac{1}{2}

A) 38\frac{3}{8}
B) 58\frac{5}{8}
C) 78\frac{7}{8}
D) 98\frac{9}{8}

2. Simplify:

(23+14)÷56\left( \frac{2}{3} + \frac{1}{4} \right) \div \frac{5}{6}

A) 58\frac{5}{8}
B) 710\frac{7}{10}
C) 910\frac{9}{10}
D) 35\frac{3}{5}

3. Solve:

56×(34+12)\frac{5}{6} \times \left( \frac{3}{4} + \frac{1}{2} \right)

A) 58\frac{5}{8}
B) 109\frac{10}{9}
C) 2524\frac{25}{24}
D) 56\frac{5}{6}

4. Simplify:

72(34×25)+13\frac{7}{2} - \left( \frac{3}{4} \times \frac{2}{5} \right) + \frac{1}{3}

A) 4712\frac{47}{12}
B) 236\frac{23}{6}
C) 2912\frac{29}{12}
D) 196\frac{19}{6}

5. Find the value of:

56÷712+23\frac{5}{6} \div \frac{7}{12} + \frac{2}{3}

A) 117\frac{11}{7}
B) 32\frac{3}{2}
C) 1914\frac{19}{14}
D) 76\frac{7}{6}

6. Solve:

(23+49)×35\left( \frac{2}{3} + \frac{4}{9} \right) \times \frac{3}{5}

A) 1015\frac{10}{15}
B) 1415\frac{14}{15}
C) 1215\frac{12}{15}
D) 815\frac{8}{15}

7. Evaluate:

35×(212)\frac{3}{5} \times \left( 2 - \frac{1}{2} \right)

A) 35\frac{3}{5}
B) 65\frac{6}{5}
C) 910\frac{9}{10}
D) 710\frac{7}{10}

8. Simplify:

47+2312\frac{4}{7} + \frac{2}{3} - \frac{1}{2}

A) 3142\frac{31}{42}
B) 1942\frac{19}{42}
C) 2342\frac{23}{42}
D) 1742\frac{17}{42}

9. Find the value of:

38÷(25+110)\frac{3}{8} \div \left( \frac{2}{5} + \frac{1}{10} \right)

A) 53\frac{5}{3}
B) 85\frac{8}{5}
C) 125\frac{12}{5}
D) 73\frac{7}{3}

10. Solve:

(5614)×32\left( \frac{5}{6} - \frac{1}{4} \right) \times \frac{3}{2}

A) 78\frac{7}{8}
B) 35\frac{3}{5}
C) 98\frac{9}{8}
D) 512\frac{5}{12}

11. Solve:

25+3814\frac{2}{5} + \frac{3}{8} - \frac{1}{4}

A) 2340\frac{23}{40}
B) 1940\frac{19}{40}
C) 2140\frac{21}{40}
D) 1740\frac{17}{40}

12. Simplify:

73×(12+25)\frac{7}{3} \times \left( \frac{1}{2} + \frac{2}{5} \right)

A) 75\frac{7}{5}
B) 1415\frac{14}{15}
C) 115\frac{11}{5}
D) 85\frac{8}{5}

13. Evaluate:

(34+23)÷56\left( \frac{3}{4} + \frac{2}{3} \right) \div \frac{5}{6}

A) 1310\frac{13}{10}
B) 149\frac{14}{9}
C) 75\frac{7}{5}
D) 1712\frac{17}{12}

14. Find the value of:

45÷23+12\frac{4}{5} \div \frac{2}{3} + \frac{1}{2}

A) 1910\frac{19}{10}
B) 1710\frac{17}{10}
C) 1110\frac{11}{10}
D) 1310\frac{13}{10}

15. Solve:

58×(2316)\frac{5}{8} \times \left( \frac{2}{3} - \frac{1}{6} \right)

A) 512\frac{5}{12}
B) 716\frac{7}{16}
C) 516\frac{5}{16}
D) 310\frac{3}{10}

16. Simplify:

67+5913\frac{6}{7} + \frac{5}{9} - \frac{1}{3}

A) 4763\frac{47}{63}
B) 4363\frac{43}{63}
C) 3963\frac{39}{63}
D) 3563\frac{35}{63}

17. Evaluate:

(13+25)×47\left( \frac{1}{3} + \frac{2}{5} \right) \times \frac{4}{7}

A) 1135\frac{11}{35}
B) 1335\frac{13}{35}
C) 935\frac{9}{35}
D) 735\frac{7}{35}

18. Solve:

91045+12\frac{9}{10} - \frac{4}{5} + \frac{1}{2}

A) 1120\frac{11}{20}
B) 920\frac{9}{20}
C) 720\frac{7}{20}
D) 1320\frac{13}{20}

19. Find the value of:

59÷(13+26)\frac{5}{9} \div \left( \frac{1}{3} + \frac{2}{6} \right)

A) 53\frac{5}{3}
B) 52\frac{5}{2}
C) 54\frac{5}{4}
D) 56\frac{5}{6}

20. Simplify:

712×(214)\frac{7}{12} \times \left( 2 - \frac{1}{4} \right)

A) 3548\frac{35}{48}
B) 2548\frac{25}{48}
C) 2148\frac{21}{48}
D) 1948\frac{19}{48}



Percentage Error in JAMB Exams

Concept of Percentage Error

Percentage error is a measure of the accuracy of a measured value compared to the actual or true value. It is used to quantify how much an estimated value deviates from the correct value.

The formula for percentage error is:

Percentage Error=(Measured ValueTrue ValueTrue Value)×100%\text{Percentage Error} = \left( \frac{|\text{Measured Value} - \text{True Value}|}{\text{True Value}} \right) \times 100\%

Where:

  • Measured Value is the value obtained from an experiment or estimation.
  • True Value is the correct or actual value.
  • |Measured Value - True Value| is the absolute difference between the measured and true values (ignoring negative signs).

Application in JAMB Exams

JAMB questions on percentage error typically involve:

  1. Finding the percentage error when given a measured and true value.
  2. Determining the measured or true value given the percentage error.
  3. Applying percentage error in real-life situations, such as approximations in physics or engineering calculations.

Worked Examples

Example 1

A student measures the length of a rod as 48 cm, but the actual length is 50 cm. Find the percentage error.

Solution:
Using the formula:

Percentage Error=(Measured ValueTrue ValueTrue Value)×100\text{Percentage Error} = \left( \frac{|\text{Measured Value} - \text{True Value}|}{\text{True Value}} \right) \times 100 =(485050)×100= \left( \frac{|48 - 50|}{50} \right) \times 100 =(250)×100= \left( \frac{2}{50} \right) \times 100 =4%= 4\%

Answer: 4%


Example 2

A digital thermometer records a temperature of 36.8°C, but the actual temperature is 37.0°C. What is the percentage error?

Solution:

Percentage Error=(36.837.037.0)×100\text{Percentage Error} = \left( \frac{|36.8 - 37.0|}{37.0} \right) \times 100 =(0.237.0)×100= \left( \frac{0.2}{37.0} \right) \times 100 =0.54%= 0.54\%

Answer: 0.54%


Example 3

A student estimates the mass of a book as 2.5 kg, but its actual mass is 2.8 kg. Find the percentage error.

Solution:

Percentage Error=(2.52.82.8)×100\text{Percentage Error} = \left( \frac{|2.5 - 2.8|}{2.8} \right) \times 100 =(0.32.8)×100= \left( \frac{0.3}{2.8} \right) \times 100 =10.71%= 10.71\%

Answer: 10.71%


Example 4

A car's speedometer shows a speed of 90 km/h, while the actual speed is 95 km/h. What is the percentage error?

Solution:

Percentage Error=(909595)×100\text{Percentage Error} = \left( \frac{|90 - 95|}{95} \right) \times 100 =(595)×100= \left( \frac{5}{95} \right) \times 100 =5.26%= 5.26\%

Answer: 5.26%


Example 5

A factory machine fills a bottle with 990 mL of liquid instead of the intended 1000 mL. Find the percentage error.

Solution:

Percentage Error=(99010001000)×100\text{Percentage Error} = \left( \frac{|990 - 1000|}{1000} \right) \times 100 =(101000)×100= \left( \frac{10}{1000} \right) \times 100 =1%= 1\%

Answer: 1%


Key Points to Remember

  • The percentage error is always positive (absolute value is taken).
  • Smaller errors mean higher accuracy.
  • In JAMB exams, questions may require conversions of units before applying the formula.
  • Round off answers to two decimal places if necessary.

Would you like more examples or explanations?


Here are 10 additional JAMB-style questions on Percentage Error for practice:

1. A student measures the weight of an object as 5.4 kg, but the actual weight is 5.5 kg. Find the percentage error.

A) 0.18%
B) 1.82%
C) 0.5%
D) 2.5%

2. A laboratory balance measures the mass of a sample as 2.2 g, but the true mass is 2.4 g. What is the percentage error?

A) 8.33%
B) 10%
C) 5%
D) 4.5%

3. A car's fuel gauge shows 30 liters in the tank, but the actual amount is 32 liters. Calculate the percentage error.

A) 6.25%
B) 8.33%
C) 7.14%
D) 5.5%

4. A thermometer measures the temperature of water as 98.6°C, but the true temperature is 100°C. Find the percentage error.

A) 1.4%
B) 1%
C) 2.4%
D) 0.6%

5. A student measures the length of a rod to be 120 cm, but the true length is 122 cm. What is the percentage error?

A) 2.5%
B) 1.64%
C) 0.8%
D) 1.5%

6. A thermometer shows a temperature of 73°C, while the true temperature is 75°C. Calculate the percentage error.

A) 2.67%
B) 3.33%
C) 4%
D) 2.5%

7. A barometer reads 760 mm Hg, but the actual atmospheric pressure is 765 mm Hg. What is the percentage error?

A) 0.65%
B) 1.32%
C) 0.5%
D) 1.75%

8. A student estimates the speed of a vehicle as 80 km/h, but the actual speed is 85 km/h. What is the percentage error?

A) 4.5%
B) 6.25%
C) 7.5%
D) 5%

9. A digital scale records the weight of an object as 50.2 kg, while the true weight is 51 kg. Find the percentage error.

A) 1.57%
B) 1.25%
C) 1.75%
D) 2%

10. A student measures the volume of a liquid as 150 mL, but the true volume is 160 mL. Find the percentage error.

A) 6.25%
B) 5%
C) 7%
D) 6.67%

These questions offer a wide range of scenarios where percentage error is calculated, helping students prepare for the JAMB exam. Let me know if you'd like the solutions for these questions!

Comments